All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Implementation Notes for the Soft Cosine Measure

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00101853" target="_blank" >RIV/00216224:14330/18:00101853 - isvavai.cz</a>

  • Result on the web

    <a href="https://arxiv.org/abs/1808.09407" target="_blank" >https://arxiv.org/abs/1808.09407</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3269206.3269317" target="_blank" >10.1145/3269206.3269317</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Implementation Notes for the Soft Cosine Measure

  • Original language description

    The standard bag-of-words vector space model (VSM) is efficient, and ubiquitous in information retrieval, but it underestimates the similarity of documents with the same meaning, but different terminology. To overcome this limitation, Sidorov et al. proposed the Soft Cosine Measure (SCM) that incorporates term similarity relations. Charlet and Damnati showed that the SCM is highly effective in question answering (QA) systems. However, the orthonormalization algorithm proposed by Sidorov et al. has an impractical time complexity of O(n^4), where n is the size of the vocabulary. In this paper, we prove a tighter lower worst-case time complexity bound of O(n^3). We also present an algorithm for computing the similarity between documents and we show that its worst-case time complexity is O(1) given realistic conditions. Lastly, we describe implementation in general-purpose vector databases such as Annoy, and Faiss and in the inverted indices of text search engines such as Apache Lucene, and ElasticSearch. Our results enable the deployment of the SCM in real-world information retrieval systems.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/TD03000295" target="_blank" >TD03000295: Intelligent software for semantic text search</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM '18)

  • ISBN

    9781450360142

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    1639-1642

  • Publisher name

    Association for Computing Machinery

  • Place of publication

    Torino, Italy

  • Event location

    Torino, Italy

  • Event date

    Oct 22, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000455712300190