All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Crossing Number of the Cone of a Graph

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00106879" target="_blank" >RIV/00216224:14330/18:00106879 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1137/17M1115320" target="_blank" >http://dx.doi.org/10.1137/17M1115320</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/17M1115320" target="_blank" >10.1137/17M1115320</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Crossing Number of the Cone of a Graph

  • Original language description

    Motivated by a problem asked by Richter and by the long standing Harary{Hill conjecture, we study the relation between the crossing number of a graph G and the crossing number of its cone CG, the graph obtained from G by adding a new vertex adjacent to all the vertices in G. Simple examples show that the di ff erence cr (CG) - cr (G) can be arbitrarily large for any fi xed k = cr (G). In this work, we are interested in fi nding the smallest possible di ff erence; that is, for each nonnegative integer k, fi nd the smallest f (k) for which there exists a graph with crossing number at least k and cone with crossing number f (k). For small values of k, we give exact values of f (k) when the problem is restricted to simple graphs and show that f (k) = k + circle minus(root k) when multiple edges are allowed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    2080-2093

  • UT code for WoS article

    000450810500026

  • EID of the result in the Scopus database

    2-s2.0-85053860050