All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Crossing Number is Hard for Kernelization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00088543" target="_blank" >RIV/00216224:14330/16:00088543 - isvavai.cz</a>

  • Result on the web

    <a href="http://socg2016.cs.tufts.edu/" target="_blank" >http://socg2016.cs.tufts.edu/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.42" target="_blank" >10.4230/LIPIcs.SoCG.2016.42</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Crossing Number is Hard for Kernelization

  • Original language description

    The graph crossing number problem, cr(G)&lt;=k, asks for a drawing of a graph G in the plane with at most k edge crossings. Although this problem is in general notoriously difficult, it is fixed-parameter tractable for the parameter k [Grohe, STOC 2001]. This suggests a closely related question of whether this problem has a polynomial kernel, meaning whether every instance of cr(G)&lt;=k can be in polynomial time reduced to an equivalent instance of size polynomial in k (and independent of |G|). We answer this question in the negative. Along the proof we show that the tile crossing number problem of twisted planar tiles is NP-hard, which has been an open problem for some time, too, and then employ the complexity technique of cross-composition. Our result holds already for the special case of graphs obtained from planar graphs by adding one edge.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-03501S" target="_blank" >GA14-03501S: Parameterized algorithms and kernelization in the context of discrete mathematics and logic</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    32nd International Symposium on Computational Geometry (SoCG 2016)

  • ISBN

    9783959770095

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    "42:1"-"42:10"

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

  • Place of publication

    Germany

  • Event location

    Boston, USA

  • Event date

    Jun 14, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article