Learning-Based Mean-Payoff Optimization in an Unknown MDP under Omega-Regular Constraints
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00108291" target="_blank" >RIV/00216224:14330/18:00108291 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.8" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.8" target="_blank" >10.4230/LIPIcs.CONCUR.2018.8</a>
Alternative languages
Result language
angličtina
Original language name
Learning-Based Mean-Payoff Optimization in an Unknown MDP under Omega-Regular Constraints
Original language description
We formalize the problem of maximizing the mean-payoff value with high probability while satisfying a parity objective in a Markov decision process (MDP) with unknown probabilistic transition function and unknown reward function. Assuming the support of the unknown transition function and a lower bound on the minimal transition probability are known in advance, we show that in MDPs consisting of a single end component, two combinations of guarantees on the parity and mean-payoff objectives can be achieved depending on how much memory one is willing to use. (i) For all epsilon and gamma we can construct an online-learning finite-memory strategy that almost-surely satisfies the parity objective and which achieves an epsilon-optimal mean payoff with probability at least 1 - gamma. (ii) Alternatively, for all epsilon and gamma there exists an online-learning infinite-memory strategy that satisfies the parity objective surely and which achieves an epsilon-optimal mean payoff with probability at least 1 - gamma. We extend the above results to MDPs consisting of more than one end component in a natural way. Finally, we show that the aforementioned guarantees are tight, i.e. there are MDPs for which stronger combinations of the guarantees cannot be ensured.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-11193S" target="_blank" >GA18-11193S: Algorithms for Infinite-State Discrete Systems and Games</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
29th International Conference on Concurrency Theory (CONCUR 2018)
ISBN
9783959770873
ISSN
1868-8969
e-ISSN
—
Number of pages
18
Pages from-to
1-18
Publisher name
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Place of publication
Dagstuhl
Event location
Dagstuhl
Event date
Jan 1, 2018
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—