All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

3-D Quantification of Filopodia in Motile Cancer Cells

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107178" target="_blank" >RIV/00216224:14330/19:00107178 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/TMI.2018.2873842" target="_blank" >https://doi.org/10.1109/TMI.2018.2873842</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TMI.2018.2873842" target="_blank" >10.1109/TMI.2018.2873842</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    3-D Quantification of Filopodia in Motile Cancer Cells

  • Original language description

    We present a 3D bioimage analysis workflow to quantitatively analyze single, actin-stained cells with filopodial protrusions of diverse structural and temporal attributes, such as number, length, thickness, level of branching, and lifetime, in time-lapse confocal microscopy image data. Our workflow makes use of convolutional neural networks trained using real as well as synthetic image data, to segment the cell volumes with highly heterogeneous fluorescence intensity levels and to detect individual filopodial protrusions, followed by a constrained nearest-neighbor tracking algorithm to obtain valuable information about the spatio-temporal evolution of individual filopodia. We validated the workflow using real and synthetic 3-D time-lapse sequences of lung adenocarcinoma cells of three morphologically distinct filopodial phenotypes and show that it achieves reliable segmentation and tracking performance, providing a robust, reproducible and less time-consuming alternative to manual analysis of the 3D+t image data.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GJ16-03909Y" target="_blank" >GJ16-03909Y: Development of Reliable Methods for Automated Quantitative Characterization of Cell Motility in Fluorescence Microscopy</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Medical Imaging

  • ISSN

    0278-0062

  • e-ISSN

    1558-254X

  • Volume of the periodical

    38

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    862-872

  • UT code for WoS article

    000460662400019

  • EID of the result in the Scopus database

    2-s2.0-85054522263