All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Recognizing User-Defined Subsequences in Human Motion Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107370" target="_blank" >RIV/00216224:14330/19:00107370 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1145/3323873.3326922" target="_blank" >http://dx.doi.org/10.1145/3323873.3326922</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3323873.3326922" target="_blank" >10.1145/3323873.3326922</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Recognizing User-Defined Subsequences in Human Motion Data

  • Original language description

    Motion capture technologies digitize human movements by tracking 3D positions of specific skeleton joints in time. Such spatio-temporal multimedia data have an enormous application potential in many fields, ranging from computer animation, through security and sports to medicine, but their computerized processing is a difficult problem. In this paper, we focus on an important task of recognition of a user-defined motion, based on a collection of labelled actions known in advance. We utilize current advances in deep feature learning and scalable similarity retrieval to build an effective and efficient k-nearest-neighbor recognition technique for 3D human motion data. The properties of the technique are demonstrated by a web application which allows a user to browse long motion sequences and specify any subsequence as the input for probabilistic recognition based on 130 predefined classes.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/GA19-02033S" target="_blank" >GA19-02033S: Searching, Mining, and Annotating Human Motion Streams</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    International Conference on Multimedia Retrieval (ICMR)

  • ISBN

    9781450367653

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    395-398

  • Publisher name

    ACM

  • Place of publication

    New York, NY, USA

  • Event location

    Ottawa, Canada

  • Event date

    Jan 1, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000482188900058