All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Augmenting Spatio-Temporal Human Motion Data for Effective 3D Action Recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107708" target="_blank" >RIV/00216224:14330/19:00107708 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ISM46123.2019.00044" target="_blank" >http://dx.doi.org/10.1109/ISM46123.2019.00044</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISM46123.2019.00044" target="_blank" >10.1109/ISM46123.2019.00044</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Augmenting Spatio-Temporal Human Motion Data for Effective 3D Action Recognition

  • Original language description

    Action recognition is a fundamental operation in 3D human motion analysis. Existing deep learning classifiers achieve a high recognition accuracy if large amounts of training data are provided. However, such data are difficult to obtain in a variety of application scenarios, mainly due to the high costs of motion capture technologies and an absence of suitable actors. In this paper, we propose augmentation techniques to artificially enlarge existing collections of 3D human skeleton sequences. The proposed techniques are especially useful for datasets distinguishing in a high number of classes, each of them characterized by only a limited number of action samples. We experimentally demonstrate that the augmented data help to significantly increase the recognition accuracy even using a standard deep learning architecture.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/GA19-02033S" target="_blank" >GA19-02033S: Searching, Mining, and Annotating Human Motion Streams</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    21st IEEE International Symposium on Multimedia (ISM)

  • ISBN

    9781728156064

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    204-207

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Neuveden

  • Event location

    San Diego, California, USA

  • Event date

    Jan 1, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000528909200033