All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Complexity of Value Iteration

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107669" target="_blank" >RIV/00216224:14330/19:00107669 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.102" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.102</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.102" target="_blank" >10.4230/LIPIcs.ICALP.2019.102</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Complexity of Value Iteration

  • Original language description

    Value iteration is a fundamental algorithm for solving Markov Decision Processes (MDPs). It computes the maximal n-step payoff by iterating n times a recurrence equation which is naturally associated to the MDP. At the same time, value iteration provides a policy for the MDP that is optimal on a given finite horizon n. In this paper, we settle the computational complexity of value iteration. We show that, given a horizon n in binary and an MDP, computing an optimal policy is EXPTIME-complete, thus resolving an open problem that goes back to the seminal 1987 paper on the complexity of MDPs by Papadimitriou and Tsitsiklis. To obtain this main result, we develop several stepping stones that yield results of an independent interest. For instance, we show that it is EXPTIME-complete to compute the n-fold iteration (with n in binary) of a function given by a straight-line program over the integers with max and + as operators. We also provide new complexity results for the bounded halting problem in linear-update counter machines.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/GJ19-15134Y" target="_blank" >GJ19-15134Y: Verification and Analysis of Probabilistic Programs</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

  • ISBN

    9783959771092

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    „102:1“-„102:15“

  • Publisher name

    Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Patras, Řecko

  • Event date

    Jan 1, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article