Approximate Policy Iteration for Markov Decision Processes via Quantitative Adaptive Aggregations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU121655" target="_blank" >RIV/00216305:26230/16:PU121655 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007%2F978-3-319-46520-3_2" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-46520-3_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-46520-3_2" target="_blank" >10.1007/978-3-319-46520-3_2</a>
Alternative languages
Result language
angličtina
Original language name
Approximate Policy Iteration for Markov Decision Processes via Quantitative Adaptive Aggregations
Original language description
We consider the problem of finding an optimal policy in a Markov decision process that maximises the expected discounted sum of rewards over an infinite time horizon. Since the explicit iterative dynamical programming scheme does not scale when increasing the dimension of the state space, a number of approximate methods have been developed. These are typically based on value or policy iteration, enabling further speedups through lumped and distributed updates, or by employing succinct representations of the value functions. However, none of the existing approximate techniques provides general, explicit and tunable bounds on the approximation error, a problem particularly relevant when the level of accuracy affects the optimality of the policy. In this paper we propose a new approximate policy iteration scheme that mitigates the state-space explosion problem by adaptive state-space aggregation, at the same time providing rigorous and explicit error bounds that can be used to control the optimality level of the obtained policy. We evaluate the new approach on a case study, demonstrating evidence that the state-space reduction results in considerable acceleration of the policy iteration scheme, while being able to meet the required level of precision.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA16-17538S" target="_blank" >GA16-17538S: Relaxed equivalence checking for approximate computing</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of 14th International Symposium on Automated Technology for Verification and Analysis
ISBN
978-3-319-46519-7
ISSN
—
e-ISSN
—
Number of pages
16
Pages from-to
13-31
Publisher name
Springer Verlag
Place of publication
Heidelberg
Event location
Chiba
Event date
Oct 17, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000389808100002