All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Adaptive formal approximations of Markov chains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU140793" target="_blank" >RIV/00216305:26230/21:PU140793 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0166531621000249" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0166531621000249</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.peva.2021.102207" target="_blank" >10.1016/j.peva.2021.102207</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Adaptive formal approximations of Markov chains

  • Original language description

    We explore formal approximation techniques for Markov chains based on state-space reduction that aim at improving the scalability of the analysis, while providing formal bounds on the approximation error. We first present a comprehensive survey of existing state-reduction techniques based on clustering or truncation. Then, we extend existing frameworks for aggregation-based analysis of Markov chains by allowing them to handle chains with an arbitrary structure of the underlying state space - including continuous-time models - and improve upon existing bounds on the approximation error. Finally, we introduce a new hybrid scheme that utilises both aggregation and truncation of the state space and provides the best available approach for approximating continuous-time models. We conclude with a broad and detailed comparative evaluation of existing and new approximation techniques and investigate how different methods handle various Markov models. The results also show that the introduced hybrid scheme significantly outperforms existing approaches and provides a speedup of the analysis up to a factor of 30 with the corresponding approximation error bounded within 0.1%.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GJ20-02328Y" target="_blank" >GJ20-02328Y: CAQtuS: Computer-Aided Quantitative Synthesis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PERFORMANCE EVALUATION

  • ISSN

    0166-5316

  • e-ISSN

    1872-745X

  • Volume of the periodical

    148

  • Issue of the periodical within the volume

    102207

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    23

  • Pages from-to

    1-23

  • UT code for WoS article

    000648542900002

  • EID of the result in the Scopus database

    2-s2.0-85105204964