Semantically Coherent Vector Space Representations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00109517" target="_blank" >RIV/00216224:14330/19:00109517 - isvavai.cz</a>
Result on the web
<a href="https://mir.fi.muni.cz/posters/mlprague-2019-semantic_representations.pdf" target="_blank" >https://mir.fi.muni.cz/posters/mlprague-2019-semantic_representations.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Semantically Coherent Vector Space Representations
Original language description
<p>Our work is a scientific poster that was presented at the ML Prague 2019 conference during February 22–24, 2019.</p> <p>Content is king (<a href="http://web.archive.org/web/20010126005200/http://www.microsoft.com/billgates/columns/1996essay/essay960103.asp">Gates, 1996</a>). Decomposition of word semantics matters (<a href="https://arxiv.org/abs/1301.3781">Mikolov, 2013</a>). Decomposition of a sentence, paragraph, and document semantics into semantically coherent vector space representations matters, too. Interpretability of these learned vector spaces is the holy grail of natural language processing today, as it would allow accurate representation of thoughts and plugging-in inference into the game.</p> <p>We will show recent results of our attempts towards this goal by showing how decomposition of document semantics could improve the query answering, performance, and “horizontal transfer learning” based on word2bits could be achieved.</p> <p>Word representation in the form of binary features allows to use word lattice representation for feature inference by the well studied formal concept analysis theory, and for precise semantic similarity metric based on discriminative features. Also, the incremental learning of word features allows to interpret and infer on them, targeting the holy grail.</p>
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů