All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Counting Linear Extensions: Parameterizations by Treewidth

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00113714" target="_blank" >RIV/00216224:14330/19:00113714 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00453-018-0496-4" target="_blank" >https://doi.org/10.1007/s00453-018-0496-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00453-018-0496-4" target="_blank" >10.1007/s00453-018-0496-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Counting Linear Extensions: Parameterizations by Treewidth

  • Original language description

    We consider the #P-complete problem of counting the number of linear extensions of a poset (#LE); a fundamental problem in order theory with applications in a variety of distinct areas. In particular, we study the complexity of #LE parameterized by the well-known decompositional parameter treewidth for two natural graphical representations of the input poset, i.e., the cover and the incomparability graph. Our main result shows that #LE is fixed-parameter intractable parameterized by the treewidth of the cover graph. This resolves an open problem recently posed in the Dagstuhl seminar on Exact Algorithms. On the positive side we show that #LE becomes fixed-parameter tractable parameterized by the treewidth of the incomparability graph.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Algorithmica

  • ISSN

    0178-4617

  • e-ISSN

  • Volume of the periodical

    81

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    27

  • Pages from-to

    1657-1683

  • UT code for WoS article

    000465431800013

  • EID of the result in the Scopus database

    2-s2.0-85053424850