Quantified conjunctive queries on partially ordered sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00093939" target="_blank" >RIV/00216224:14330/16:00093939 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.tcs.2016.01.010" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2016.01.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2016.01.010" target="_blank" >10.1016/j.tcs.2016.01.010</a>
Alternative languages
Result language
angličtina
Original language name
Quantified conjunctive queries on partially ordered sets
Original language description
We study the computational problem of checking whether a quantified conjunctive query (a first-order sentence built using only conjunction as Boolean connective) is true in a finite poset (a reflexive, antisymmetric, and transitive directed graph). We prove that the problem is already NP-hard on a certain fixed poset, and investigate structural properties of posets yielding fixed-parameter tractability when the problem is parameterized by the query. Our main algorithmic result is that model checking quantified conjunctive queries on posets is fixed-parameter tractable when parameterized by the sentence and the width of the poset (the maximum size of a subset of pairwise incomparable elements). We complement our algorithmic result by complexity results with respect to classes of finite posets in a hierarchy of natural poset invariants, establishing its tightness in this sense. (C) 2016 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
618
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
72-84
UT code for WoS article
000370897800006
EID of the result in the Scopus database
—