A Classification Framework for Practice Exercises in Adaptive Learning Systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00118359" target="_blank" >RIV/00216224:14330/20:00118359 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/9210602" target="_blank" >https://ieeexplore.ieee.org/document/9210602</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TLT.2020.3027050" target="_blank" >10.1109/TLT.2020.3027050</a>
Alternative languages
Result language
angličtina
Original language name
A Classification Framework for Practice Exercises in Adaptive Learning Systems
Original language description
Learning systems can utilize many practice exercises, ranging from simple multiple-choice questions to complex problem-solving activities. In this article, we propose a classification framework for such exercises. The framework classifies exercises in three main aspects: 1) the primary type of interaction; 2) the presentation mode; and 3) the integration in the learning system. For each of these aspects, we provide a systematic mapping of available choices and pointers to relevant research. For developers of learning systems, the framework facilitates the design and implementation of exercises. For researchers, the framework provides support for the design, description, and discussion of experiments dealing with student modeling techniques and algorithms for adaptive learning. One of the aims of the framework is to facilitate replicability and portability of research results in adaptive learning.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Learning Technologies
ISSN
1939-1382
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
734-747
UT code for WoS article
000600838500008
EID of the result in the Scopus database
2-s2.0-85092014876