Long paths and connectivity in 1-independent random graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00118537" target="_blank" >RIV/00216224:14330/20:00118537 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/rsa.20972" target="_blank" >https://doi.org/10.1002/rsa.20972</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/rsa.20972" target="_blank" >10.1002/rsa.20972</a>
Alternative languages
Result language
angličtina
Original language name
Long paths and connectivity in 1-independent random graphs
Original language description
A probability measure.. on the subsets of the edge set of a graph G is a 1-independent probability measure (1-ipm) on G if events determined by edge sets that are at graph distance at least 1 apart in G are independent. Given a 1-ipm denote by G.. the associated random graph model. Let. 1,.p(G) denote the collection of 1-ipms.. onGforwhich each edge is included inG.. with probability at least p. For G = Z2, Balister and Bollobas asked for the value of the least p. such that for all p > p. and al mu epsilon M1 >= p(G)(mu) (G).. almost surely contains an infinite component. In this paper, we significantly improve previous lower bounds on p.. We also determine the 1-independent critical probability for the emergence of long paths on the line and ladder lattices. Finally, for finite graphs G we study f 1,G(p), the infimum over all mu epsilon M (1)>=(p)(G) of the probability that G.. is connected. We determine f 1,G(p) exactly when G is a path, a complete graph and a cycle of length at most 5.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Random Structures & Algorithms
ISSN
1042-9832
e-ISSN
—
Volume of the periodical
57
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
43
Pages from-to
1007-1049
UT code for WoS article
000577434000001
EID of the result in the Scopus database
2-s2.0-85092609413