Ramsey goodness of trees in random graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00561499" target="_blank" >RIV/67985807:_____/23:00561499 - isvavai.cz</a>
Result on the web
<a href="https://dx.doi.org/10.1002/rsa.21124" target="_blank" >https://dx.doi.org/10.1002/rsa.21124</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/rsa.21124" target="_blank" >10.1002/rsa.21124</a>
Alternative languages
Result language
angličtina
Original language name
Ramsey goodness of trees in random graphs
Original language description
For graphs G, H and a family of graphs., we write G ->(H,P) to denote that every blue-red coloring of the edges of G contains either a blue copy of H, or a red copy of each F is an element of P For integers n and D, let tau(n, D) denote the family of all trees with n edges and maximum degree atmostD. We prove that for each r, D >= 2, there exist constants C, C' > 0 such that if p >= Cn(-2/(r+2)) and N >= rn + C'/p, then G(N, p)->(Kr+ 1, tau(n, D)) with high probability. This is a random version of a well-known result of Chvatal from 1977. The proof combines a stability argument with the embedding of trees in expander graphs. Furthermore, the proof of the stability result is based on a sparse random analogue of the Erd.os-Sos conjecture for trees with linear size and bounded maximum degree, which may be of independent interest.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ20-27757Y" target="_blank" >GJ20-27757Y: Random discrete structures</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Random Structures and Algorithms
ISSN
1042-9832
e-ISSN
1098-2418
Volume of the periodical
62
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
30
Pages from-to
761-790
UT code for WoS article
000880355700001
EID of the result in the Scopus database
2-s2.0-85148345421