Learned metric index - proposition of learned indexing for unstructured data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00118915" target="_blank" >RIV/00216224:14330/21:00118915 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.is.2021.101774" target="_blank" >http://dx.doi.org/10.1016/j.is.2021.101774</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.is.2021.101774" target="_blank" >10.1016/j.is.2021.101774</a>
Alternative languages
Result language
angličtina
Original language name
Learned metric index - proposition of learned indexing for unstructured data
Original language description
The main paradigm of similarity searching in metric spaces has remained mostly unchanged for decades - data objects are organized into a hierarchical structure according to their mutual distances, using representative pivots to reduce the number of distance computations needed to efficiently search the data. We propose an alternative to this paradigm, using machine learning models to replace pivots, thus posing similarity search as a classification problem, which stands in for numerous expensive distance computations. Even a relatively naive implementation of this idea is more than competitive with state-of-the-art methods in terms of speed and recall, proving the concept as viable and showing great potential for its future development.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Information Systems
ISSN
0306-4379
e-ISSN
—
Volume of the periodical
100
Issue of the periodical within the volume
101774
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
1-12
UT code for WoS article
000649115200005
EID of the result in the Scopus database
2-s2.0-85104454116