All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient Indexing of 3D Human Motions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00118943" target="_blank" >RIV/00216224:14330/21:00118943 - isvavai.cz</a>

  • Result on the web

    <a href="https://dl.acm.org/doi/10.1145/3460426.3463646" target="_blank" >https://dl.acm.org/doi/10.1145/3460426.3463646</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3460426.3463646" target="_blank" >10.1145/3460426.3463646</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient Indexing of 3D Human Motions

  • Original language description

    Digitization of human motion using 2D or 3D skeleton representations offers exciting possibilities for many applications but, at the same time, requires scalable content-based retrieval techniques to make such data reusable. Although a lot of research effort focuses on extracting content-preserving motion features, there is a lack of techniques that support efficient similarity search on a large scale. In this paper, we introduce a new indexing scheme for organizing large collections of spatio-temporal skeleton sequences. Specifically, we apply the motion-word concept to transform skeleton sequences into structured text-like motion documents, and index such documents using an extended inverted-file approach. Over this index, we design a new similarity search algorithm that exploits the properties of the motion-word representation and provides efficient retrieval with a variable level of approximation, possibly reaching constant search costs disregarding the collection size. Experimental results confirm the usefulness of the proposed approach.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/GA19-02033S" target="_blank" >GA19-02033S: Searching, Mining, and Annotating Human Motion Streams</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ACM International Conference on Multimedia Retrieval (ICMR)

  • ISBN

    9781450384636

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    10-18

  • Publisher name

    ACM

  • Place of publication

    Neuveden

  • Event location

    Taipei, Taiwan

  • Event date

    Jan 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000723651900002