Efficient Indexing of 3D Human Motions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00118943" target="_blank" >RIV/00216224:14330/21:00118943 - isvavai.cz</a>
Result on the web
<a href="https://dl.acm.org/doi/10.1145/3460426.3463646" target="_blank" >https://dl.acm.org/doi/10.1145/3460426.3463646</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3460426.3463646" target="_blank" >10.1145/3460426.3463646</a>
Alternative languages
Result language
angličtina
Original language name
Efficient Indexing of 3D Human Motions
Original language description
Digitization of human motion using 2D or 3D skeleton representations offers exciting possibilities for many applications but, at the same time, requires scalable content-based retrieval techniques to make such data reusable. Although a lot of research effort focuses on extracting content-preserving motion features, there is a lack of techniques that support efficient similarity search on a large scale. In this paper, we introduce a new indexing scheme for organizing large collections of spatio-temporal skeleton sequences. Specifically, we apply the motion-word concept to transform skeleton sequences into structured text-like motion documents, and index such documents using an extended inverted-file approach. Over this index, we design a new similarity search algorithm that exploits the properties of the motion-word representation and provides efficient retrieval with a variable level of approximation, possibly reaching constant search costs disregarding the collection size. Experimental results confirm the usefulness of the proposed approach.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/GA19-02033S" target="_blank" >GA19-02033S: Searching, Mining, and Annotating Human Motion Streams</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ACM International Conference on Multimedia Retrieval (ICMR)
ISBN
9781450384636
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
10-18
Publisher name
ACM
Place of publication
Neuveden
Event location
Taipei, Taiwan
Event date
Jan 1, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000723651900002