All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Towards Efficient Human Action Retrieval based on Triplet-Loss Metric Learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00125807" target="_blank" >RIV/00216224:14330/22:00125807 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-031-12423-5_18" target="_blank" >http://dx.doi.org/10.1007/978-3-031-12423-5_18</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-12423-5_18" target="_blank" >10.1007/978-3-031-12423-5_18</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Towards Efficient Human Action Retrieval based on Triplet-Loss Metric Learning

  • Original language description

    Recent pose-estimation methods enable digitization of human motion by extracting 3D skeleton sequences from ordinary video recordings. Such spatio-temporal skeleton representation offers attractive possibilities for a wide range of applications but, at the same time, requires effective and efficient content-based access to make the extracted data reusable. In this paper, we focus on content-based retrieval of pre-segmented skeleton sequences of human actions to identify the most similar ones to a query action. We mainly deal with the extraction of content-preserving action features, which are learned using the triplet-loss approach in an unsupervised way. Such features are (1) effective as they achieve a similar retrieval quality as the features learned in a supervised way, and (2) of a fixed size which enables the application of indexing structures for efficient retrieval.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    33rd International Conference on Database and Expert Systems Applications (DEXA)

  • ISBN

    9783031124228

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    234-247

  • Publisher name

    Springer-Verlag

  • Place of publication

    Berlin, Heidelberg

  • Event location

    Vienna, Austria

  • Event date

    Jan 1, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000877013800018