Towards Efficient Human Action Retrieval based on Triplet-Loss Metric Learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00125807" target="_blank" >RIV/00216224:14330/22:00125807 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-031-12423-5_18" target="_blank" >http://dx.doi.org/10.1007/978-3-031-12423-5_18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-12423-5_18" target="_blank" >10.1007/978-3-031-12423-5_18</a>
Alternative languages
Result language
angličtina
Original language name
Towards Efficient Human Action Retrieval based on Triplet-Loss Metric Learning
Original language description
Recent pose-estimation methods enable digitization of human motion by extracting 3D skeleton sequences from ordinary video recordings. Such spatio-temporal skeleton representation offers attractive possibilities for a wide range of applications but, at the same time, requires effective and efficient content-based access to make the extracted data reusable. In this paper, we focus on content-based retrieval of pre-segmented skeleton sequences of human actions to identify the most similar ones to a query action. We mainly deal with the extraction of content-preserving action features, which are learned using the triplet-loss approach in an unsupervised way. Such features are (1) effective as they achieve a similar retrieval quality as the features learned in a supervised way, and (2) of a fixed size which enables the application of indexing structures for efficient retrieval.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
33rd International Conference on Database and Expert Systems Applications (DEXA)
ISBN
9783031124228
ISSN
0302-9743
e-ISSN
—
Number of pages
14
Pages from-to
234-247
Publisher name
Springer-Verlag
Place of publication
Berlin, Heidelberg
Event location
Vienna, Austria
Event date
Jan 1, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000877013800018