All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

SegmentCodeList: Unsupervised Representation Learning for Human Skeleton Data Retrieval

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00130177" target="_blank" >RIV/00216224:14330/23:00130177 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-031-28238-6_8" target="_blank" >http://dx.doi.org/10.1007/978-3-031-28238-6_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-28238-6_8" target="_blank" >10.1007/978-3-031-28238-6_8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    SegmentCodeList: Unsupervised Representation Learning for Human Skeleton Data Retrieval

  • Original language description

    Recent progress in pose-estimation methods enables the extraction of sufficiently-precise 3D human skeleton data from ordinary videos, which offers great opportunities for a wide range of applications. However, such spatio-temporal data are typically extracted in the form of a continuous skeleton sequence without any information about semantic segmentation or annotation. To make the extracted data reusable for further processing, there is a need to access them based on their content. In this paper, we introduce a universal retrieval approach that compares any two skeleton sequences based on temporal order and similarities of their underlying segments. The similarity of segments is determined by their content-preserving low-dimensional code representation that is learned using the Variational AutoEncoder principle in an unsupervised way. The quality of the proposed representation is validated in retrieval and classification scenarios; our proposal outperforms the state-of-the-art approaches in effectiveness and reaches speed-ups up to 64x on common skeleton sequence datasets.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    45th European Conference on Information Retrieval (ECIR)

  • ISBN

    9783031282379

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    110-124

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Dublin, Ireland

  • Event date

    Jan 1, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000995489700008