All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

FIMSIM: Discovering Communities By Frequent Item-Set Mining and Similarity Search

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00119128" target="_blank" >RIV/00216224:14330/21:00119128 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-89657-7_28" target="_blank" >http://dx.doi.org/10.1007/978-3-030-89657-7_28</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-89657-7_28" target="_blank" >10.1007/978-3-030-89657-7_28</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    FIMSIM: Discovering Communities By Frequent Item-Set Mining and Similarity Search

  • Original language description

    With the growth of structured graph data, the analysis of networks is an important topic. Community mining is one of the main analytical tasks of network analysis. Communities are dense clusters of nodes, possibly containing additional information about a network. In this paper, we present a community-detection approach, called FIMSIM, which is based on principles of frequent item-set mining and similarity search. The frequent item-set mining is used to extract cores of the communities, and a proposed similarity function is applied to discover suitable surroundings of the cores. The proposed approach outperforms the state-of-the-art DB-Link Clustering algorithm while enabling the easier selection of parameters. In addition, possible modifications are proposed to control the resulting communities better.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/GA19-02033S" target="_blank" >GA19-02033S: Searching, Mining, and Annotating Human Motion Streams</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    14th International Conference on Similarity Search and Applications (SISAP)

  • ISBN

    9783030896560

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    372-383

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Dortmund, Germany

  • Event date

    Sep 29, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000722252200028