Application of Super-Resolution Models in Optical Character Recognition of Czech Medieval Texts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00119900" target="_blank" >RIV/00216224:14330/21:00119900 - isvavai.cz</a>
Result on the web
<a href="https://nlp.fi.muni.cz/raslan/raslan21.pdf#page=19" target="_blank" >https://nlp.fi.muni.cz/raslan/raslan21.pdf#page=19</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Application of Super-Resolution Models in Optical Character Recognition of Czech Medieval Texts
Original language description
Optical character recognition (OCR) of scanned images is used in multiple applications in numerous domains and several frameworks and OCR algorithms are publicly available. However, some domains such as medieval texts suffer from low accuracy, mainly due to low resources and poor quality data. For such domains, preprocessing techniques help to increase the accuracy of OCR algorithms. In this paper, we experiment with two super-resolution models: Waifu2x and SRGAN. We use the models to reduce noise and increase the image resolution of scanned medieval texts. We evaluate the models on the AHISTO project dataset and compare them against several baselines. We show that our models produce improvements in OCR accuracy.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/TL03000365" target="_blank" >TL03000365: Accessible historical sources. Making medieval written documents available in the form of a contextual database</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Recent Advances in Slavonic Natural Language Processing (RASLAN 2021)
ISBN
9788026316701
ISSN
2336-4289
e-ISSN
—
Number of pages
8
Pages from-to
11-18
Publisher name
Tribun EU
Place of publication
Brno
Event location
Brno
Event date
Jan 1, 2021
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—