When Tesseract Brings Friends: Layout Analysis, Language Identification, and Super-Resolution in the Optical Character Recognition of Medieval Texts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00119901" target="_blank" >RIV/00216224:14330/21:00119901 - isvavai.cz</a>
Result on the web
<a href="https://nlp.fi.muni.cz/raslan/raslan21.pdf#page=37" target="_blank" >https://nlp.fi.muni.cz/raslan/raslan21.pdf#page=37</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
When Tesseract Brings Friends: Layout Analysis, Language Identification, and Super-Resolution in the Optical Character Recognition of Medieval Texts
Original language description
The aim of the AHISTO project is to make documents from the Hussite era (1419–1436) available to the general public through a web-hosted searchable database. Although scanned images of letterpress reprints from the 19th and 20th century are available, accurate optical character recognition (OCR) algorithms are required to extract searchable text from the scanned images. In our previous article [15], we have shown that the Tesseract 4 OCR algorithm was the second fastest and the most accurate among five different OCR algorithms. In this article, we investigate the impact of six preprocessing techniques on the accuracy of Tesseract 4. Additionally, we compare Tesseract 4 with three other OCR algorithms on the language identification task. Furthermore, we publish an open dataset [16] of scanned images and OCR texts with human annotations for layout analysis, OCR evaluation, and language identification. In Section 2, we describe the related work in OCR preprocessing. In Section 3, we describe our three preprocessing techniques and our two evaluation tasks. In Section 4, we discuss the results of our evaluation. In Section 5, we offer concluding remarks and ideas for future work in the OCR of medieval texts.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Recent Advances in Slavonic Natural Language Processing (RASLAN 2021)
ISBN
9788026316701
ISSN
2336-4289
e-ISSN
—
Number of pages
11
Pages from-to
29-39
Publisher name
Tribun EU
Place of publication
Brno
Event location
Brno
Event date
Jan 1, 2021
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—