Better Model, Worse Predictions: The Dangers in Student Model Comparisons
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00121881" target="_blank" >RIV/00216224:14330/21:00121881 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-78292-4_40" target="_blank" >http://dx.doi.org/10.1007/978-3-030-78292-4_40</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-78292-4_40" target="_blank" >10.1007/978-3-030-78292-4_40</a>
Alternative languages
Result language
angličtina
Original language name
Better Model, Worse Predictions: The Dangers in Student Model Comparisons
Original language description
The additive factor model is a widely used tool for analyzing educational data, yet it is often used as an off-the-shelf solution without considering implementation details. A common practice is to compare multiple additive factor models, choose the one with the best predictive accuracy, and interpret the parameters of the model as evidence of student learning. In this work, we use simulated data to show that in certain situations, this approach can lead to misleading results. Specifically, we show how student skill distribution affects estimates of other model parameters.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
International Conference on Artificial Intelligence in Education
ISBN
9783030782917
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
500-511
Publisher name
Springer
Place of publication
Cham
Event location
Cham
Event date
Jan 1, 2021
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
000885021300040