All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Strong Modeling Limits of Graphs with Bounded Tree-Width

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00126000" target="_blank" >RIV/00216224:14330/21:00126000 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-83823-2_43" target="_blank" >http://dx.doi.org/10.1007/978-3-030-83823-2_43</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-83823-2_43" target="_blank" >10.1007/978-3-030-83823-2_43</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Strong Modeling Limits of Graphs with Bounded Tree-Width

  • Original language description

    The notion of first order convergence of graphs unifies the notions of convergence for sparse and dense graphs. Nešetřil and Ossona de Mendez [J. Symbolic Logic 84 (2019), 452–472] proved that every first order convergent sequence of graphs from a nowhere-dense class of graphs has a modeling limit and conjectured the existence of such modeling limits with an additional property, the strong finitary mass transport principle. The existence of modeling limits satisfying the strong finitary mass transport principle was proved for first order convergent sequences of trees by Nešetřil and Ossona de Mendez [Electron. J. Combin. 23 (2016), P2.52] and for first order sequences of graphs with bounded path-width by Gajarský et al. [Random Structures Algorithms 50 (2017), 612–635]. We establish the existence of modeling limits satisfying the strong finitary mass transport principle for first order convergent sequences of graphs with bounded tree-width.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Trends in Mathematics, Volume 14, Extended Abstracts of EuroComb 2021, European Conference on Combinatorics, Graph Theory and Applications

  • ISBN

    9783030838225

  • ISSN

    2297-0215

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    273-279

  • Publisher name

    Birkhäuser

  • Place of publication

    Barcelona

  • Event location

    Barcelona

  • Event date

    Jan 1, 2021

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article