Strong Modeling Limits of Graphs with Bounded Tree-Width
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00126000" target="_blank" >RIV/00216224:14330/21:00126000 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-83823-2_43" target="_blank" >http://dx.doi.org/10.1007/978-3-030-83823-2_43</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-83823-2_43" target="_blank" >10.1007/978-3-030-83823-2_43</a>
Alternative languages
Result language
angličtina
Original language name
Strong Modeling Limits of Graphs with Bounded Tree-Width
Original language description
The notion of first order convergence of graphs unifies the notions of convergence for sparse and dense graphs. Nešetřil and Ossona de Mendez [J. Symbolic Logic 84 (2019), 452–472] proved that every first order convergent sequence of graphs from a nowhere-dense class of graphs has a modeling limit and conjectured the existence of such modeling limits with an additional property, the strong finitary mass transport principle. The existence of modeling limits satisfying the strong finitary mass transport principle was proved for first order convergent sequences of trees by Nešetřil and Ossona de Mendez [Electron. J. Combin. 23 (2016), P2.52] and for first order sequences of graphs with bounded path-width by Gajarský et al. [Random Structures Algorithms 50 (2017), 612–635]. We establish the existence of modeling limits satisfying the strong finitary mass transport principle for first order convergent sequences of graphs with bounded tree-width.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Trends in Mathematics, Volume 14, Extended Abstracts of EuroComb 2021, European Conference on Combinatorics, Graph Theory and Applications
ISBN
9783030838225
ISSN
2297-0215
e-ISSN
—
Number of pages
7
Pages from-to
273-279
Publisher name
Birkhäuser
Place of publication
Barcelona
Event location
Barcelona
Event date
Jan 1, 2021
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—