All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rooting algebraic vertices of convergent sequences

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00573756" target="_blank" >RIV/67985807:_____/23:00573756 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.phil.muni.cz/eurocomb/article/view/35609/31523" target="_blank" >https://journals.phil.muni.cz/eurocomb/article/view/35609/31523</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5817/CZ.MUNI.EUROCOMB23-075" target="_blank" >10.5817/CZ.MUNI.EUROCOMB23-075</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rooting algebraic vertices of convergent sequences

  • Original language description

    Structural convergence is a framework for convergence of graphs by Nešetřil and Ossona de Mendez that unifies the dense (left) graph convergence and Benjamini-Schramm convergence. They posed a problem asking whether for a given sequence of graphs (Gn) converging to a limit L and a vertex r of L it is possible to find a sequence of vertices (rn) such that L rooted at r is the limit of the graphs Gn rooted at rn. A counterexample was found by Christofides and Král’, but they showed that the statement holds for almost all vertices r of L. We offer another perspective to the original problem by considering the size of definable sets to which the root r belongs. We prove that if r is an algebraic vertex (i.e. belongs to a finite definable set), the sequence of roots (rn) always exists.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    EUROCOMB’23. Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications

  • ISBN

  • ISSN

    2788-3116

  • e-ISSN

    2788-3116

  • Number of pages

    6

  • Pages from-to

    539-544

  • Publisher name

    MUNI Press

  • Place of publication

    Brno

  • Event location

    Prague

  • Event date

    Aug 28, 2023

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article