All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Local Limit of the Uniform Spanning Tree on Dense Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00502247" target="_blank" >RIV/67985807:_____/18:00502247 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10955-017-1933-5" target="_blank" >http://dx.doi.org/10.1007/s10955-017-1933-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10955-017-1933-5" target="_blank" >10.1007/s10955-017-1933-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Local Limit of the Uniform Spanning Tree on Dense Graphs

  • Original language description

    Let G be a connected graph in which almost all vertices have linear degrees and let T be a uniform spanning tree of G. For any fixed rooted tree F of height r we compute the asymptotic density of vertices v for which the r-ball around v in T is isomorphic to F. We deduce from this that if {Gn} is a sequence of such graphs converging to a graphon W, then the uniform spanning tree of Gn locally converges to a multi-type branching process defined in terms of W. As an application, we prove that in a graph with linear minimum degree, with high probability, the density of leaves in a uniform spanning tree is at least e^-1 - o(1), the density of vertices of degree 2 is at most e^-1 + o(1) and the density of vertices of degree k⩾ 3 is at most (k-2)k-2(k-1)!ek-2+o(1). These bounds are sharp.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ16-07822Y" target="_blank" >GJ16-07822Y: Extremal graph theory and applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Statistical Physics

  • ISSN

    0022-4715

  • e-ISSN

  • Volume of the periodical

    173

  • Issue of the periodical within the volume

    3-4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    44

  • Pages from-to

    502-545

  • UT code for WoS article

    000450490500004

  • EID of the result in the Scopus database

    2-s2.0-85040344695