On limits of sparse random graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10372525" target="_blank" >RIV/00216208:11320/16:10372525 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.endm.2016.09.059" target="_blank" >http://dx.doi.org/10.1016/j.endm.2016.09.059</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.endm.2016.09.059" target="_blank" >10.1016/j.endm.2016.09.059</a>
Alternative languages
Result language
angličtina
Original language name
On limits of sparse random graphs
Original language description
We present a notion of convergence for sequences of finite graphs {Gn} that can be seen as a generalization of the Benjamini-Schramm convergence notion for bounded degree graphs, regarding the distribution of r-neighbourhoods of the vertices, and the left-convergence notion for dense graphs, regarding, given any finite graph F, the limit of the probabilities that a random map from V(F) to V(Gn) is a graph homomorphism.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LL1201" target="_blank" >LL1201: Complex Structures: Regularities in Combinatorics and Discrete Mathematics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
October
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
343-348
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84992563826