All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lower bound on the size of a quasirandom forcing set of permutations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00125023" target="_blank" >RIV/00216224:14330/22:00125023 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1017/S0963548321000298" target="_blank" >http://dx.doi.org/10.1017/S0963548321000298</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0963548321000298" target="_blank" >10.1017/S0963548321000298</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lower bound on the size of a quasirandom forcing set of permutations

  • Original language description

    A set S of permutations is forcing if for any sequence {Pi_i} of permutations where the density d(pi, Pi_i) converges to 1/|pi|! for every permutation pi from S, it holds that {Pi_i} is quasirandom. Graham asked whether there exists an integer k such that the set of all permutations of order k is forcing; this has been shown to be true for any k&gt;=4 . In particular, the set of all 24 permutations of order 4 is forcing. We provide the first non-trivial lower bound on the size of a forcing set of permutations: every forcing set of permutations (with arbitrary orders) contains at least four permutations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    COMBINATORICS PROBABILITY & COMPUTING

  • ISSN

    0963-5483

  • e-ISSN

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    304-319

  • UT code for WoS article

    000752712800001

  • EID of the result in the Scopus database

    2-s2.0-85111434334