Quasirandom Latin squares
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00125044" target="_blank" >RIV/00216224:14330/22:00125044 - isvavai.cz</a>
Result on the web
<a href="https://arxiv.org/abs/2011.07572" target="_blank" >https://arxiv.org/abs/2011.07572</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/rsa.21060" target="_blank" >10.1002/rsa.21060</a>
Alternative languages
Result language
angličtina
Original language name
Quasirandom Latin squares
Original language description
We prove a conjecture by Garbe et al. [arXiv:2010.07854] by showing that a Latin square is quasirandom if and only if the density of every 2x3 pattern is 1/720 + o(1). This result is the best possible in the sense that 2x3 cannot be replaced with 2x2 or 1xN for any N.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Random Structures & Algorithms
ISSN
1098-2418
e-ISSN
1042-9832
Volume of the periodical
61
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
298-308
UT code for WoS article
000717454700001
EID of the result in the Scopus database
2-s2.0-85118830580