All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Similarity Search with the Distance Density Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00127335" target="_blank" >RIV/00216224:14330/22:00127335 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-17849-8_10" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-17849-8_10</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-17849-8_10" target="_blank" >10.1007/978-3-031-17849-8_10</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Similarity Search with the Distance Density Model

  • Original language description

    The metric space model of similarity has become a standard formal paradigm of generic similarity search engine implementations. However, the constraints of identity and symmetry prevent from expressing the subjectivity and dependence on the context perceived by humans. In this paper, we study the suitability of the Distance density model of similarity for searching. First, we use the Local Outlier Factor (LOF) to estimate a data density in search collections and evaluate plenty of queries using the standard geometric model and its extension respecting the densities. We let 200 people assess the search effectiveness of the two alternatives using the web interface. Encouraged by the positive effects of the Distance density model, we propose an alternative way to estimate the data densities to avoid the quadratic LOF computation complexity with respect to the dataset size. The sketches with unbalanced bits are clarified to be in correlation with LOFs, which opens a possibility for an efficient implementation of large-scale similarity search systems based on the Distance density model.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Similarity Search and Applications: 15th International Conference, SISAP 2022, Bologna, Italy, October 5 - October 7, 2020, Proceedings

  • ISBN

    9783031178481

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    15

  • Pages from-to

    118-132

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Bologna, Itálie

  • Event date

    Jan 1, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000874756300010