All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Non-Bipartite K-Common Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00127840" target="_blank" >RIV/00216224:14330/22:00127840 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/22:00361758

  • Result on the web

    <a href="http://doi.org/10.1007/s00493-020-4499-9" target="_blank" >http://doi.org/10.1007/s00493-020-4499-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00493-020-4499-9" target="_blank" >10.1007/s00493-020-4499-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Non-Bipartite K-Common Graphs

  • Original language description

    A graph H is k-common if the number of monochromatic copies of H in a k-edge-coloring of Kn is asymptotically minimized by a random coloring. For every k, we construct a connected non-bipartite k-common graph. This resolves a problem raised by Jagger, Štovíček and Thomason [20]. We also show that a graph H is k-common for every k if and only if H is Sidorenko and that H is locally k-common for every k if and only if H is locally Sidorenko.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    COMBINATORICA

  • ISSN

    0209-9683

  • e-ISSN

  • Volume of the periodical

    42

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    28

  • Pages from-to

    87-114

  • UT code for WoS article

    000757755200002

  • EID of the result in the Scopus database

    2-s2.0-85124762881