Non-Bipartite K-Common Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00127840" target="_blank" >RIV/00216224:14330/22:00127840 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/22:00361758
Result on the web
<a href="http://doi.org/10.1007/s00493-020-4499-9" target="_blank" >http://doi.org/10.1007/s00493-020-4499-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00493-020-4499-9" target="_blank" >10.1007/s00493-020-4499-9</a>
Alternative languages
Result language
angličtina
Original language name
Non-Bipartite K-Common Graphs
Original language description
A graph H is k-common if the number of monochromatic copies of H in a k-edge-coloring of Kn is asymptotically minimized by a random coloring. For every k, we construct a connected non-bipartite k-common graph. This resolves a problem raised by Jagger, Štovíček and Thomason [20]. We also show that a graph H is k-common for every k if and only if H is Sidorenko and that H is locally k-common for every k if and only if H is locally Sidorenko.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMBINATORICA
ISSN
0209-9683
e-ISSN
—
Volume of the periodical
42
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
28
Pages from-to
87-114
UT code for WoS article
000757755200002
EID of the result in the Scopus database
2-s2.0-85124762881