Soft Alignment Objectives for Robust Adaptation of Language Generation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00130912" target="_blank" >RIV/00216224:14330/23:00130912 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2023.acl-long.492" target="_blank" >https://aclanthology.org/2023.acl-long.492</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2023.acl-long.492" target="_blank" >10.18653/v1/2023.acl-long.492</a>
Alternative languages
Result language
angličtina
Original language name
Soft Alignment Objectives for Robust Adaptation of Language Generation
Original language description
Domain adaptation allows generative language models to address specific flaws caused by the domain shift of their application. However, the traditional adaptation by further training on in-domain data rapidly weakens the model's ability to generalize to other domains, making the open-ended deployments of the adapted models prone to errors. This work introduces novel training objectives built upon a semantic similarity of the predicted tokens to the reference. Our results show that (1) avoiding the common assumption of a single correct prediction by constructing the training target from tokens' semantic similarity can largely mitigate catastrophic forgetting of adaptation, while (2) preserving the adaptation in-domain quality, (3) with negligible additions to compute costs. In the broader context, the objectives grounded in a continuous token similarity pioneer the exploration of the middle ground between the efficient but na"{i}ve exact-match token-level objectives and expressive but computationally- and resource-intensive sequential objectives.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
ISBN
9781959429722
ISSN
0736-587X
e-ISSN
—
Number of pages
17
Pages from-to
8837-8853
Publisher name
Association for Computational Linguistics
Place of publication
Toronto, Canada
Event location
Toronto, Canada
Event date
Jul 9, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—