All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CRANBERRY: Memory-Effective Search in 100M High-Dimensional CLIP Vectors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00131529" target="_blank" >RIV/00216224:14330/23:00131529 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-46994-7_26" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-46994-7_26</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-46994-7_26" target="_blank" >10.1007/978-3-031-46994-7_26</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CRANBERRY: Memory-Effective Search in 100M High-Dimensional CLIP Vectors

  • Original language description

    Recent advances in cross-modal multimedia data analysis necessarily require efficient similarity search on the scales of hundreds of millions of high-dimensional vectors. We address this task by proposing the CRANBERRY algorithm that specifically combines and tunes several existing similarity search strategies. In particular, the algorithm: (1) employs the Voronoi partitioning to obtain a query-relevant candidate set in constant time, (2) applies filtering techniques to prune the obtained candidates significantly, and (3) re-rank the retained candidate vectors with respect to the query vector. Applied to the dataset of 100 million 768-dimensional vectors, the algorithm evaluates 10NN queries with 90% recall and query latency of 1.2s on average, all with a throughput of 15 queries per second on a server with 56 core-CPU, and 4.7q/sec. on a PC.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    16th International Conference on Similarity Search and Applications (SISAP)

  • ISBN

    9783031469930

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    9

  • Pages from-to

    300-308

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    A Coruña, Spain

  • Event date

    Jan 1, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article