All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Twin-width of Planar Graphs; a Short Proof

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00131578" target="_blank" >RIV/00216224:14330/23:00131578 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.5817/CZ.MUNI.EUROCOMB23-082" target="_blank" >http://dx.doi.org/10.5817/CZ.MUNI.EUROCOMB23-082</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5817/CZ.MUNI.EUROCOMB23-082" target="_blank" >10.5817/CZ.MUNI.EUROCOMB23-082</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Twin-width of Planar Graphs; a Short Proof

  • Original language description

    The fascinating question of the maximum value of twin-width on planar graphs is nowadays not far from a final resolution; there is a lower bound of coming from a construction by Král‘ and Lamaison [arXiv, September 2022], and an upper bound of by Hliněný and Jedelský [arXiv, October 2022]. The upper bound (currently best) of 7, however, is rather complicated and involved. We give a short and simple self-contained proof that the twin-width of planar graphs is at most 11.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    European Conference on Combinatorics, Graph Theory and Applications EUROCOMB’23

  • ISBN

  • ISSN

    2788-3116

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    595-600

  • Publisher name

    MUNI Press

  • Place of publication

    Brno, Czech Republic

  • Event location

    Brno, Czech Republic

  • Event date

    Jan 1, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article