Interactive Matching Logic Proofs in Coq
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00131889" target="_blank" >RIV/00216224:14330/23:00131889 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-031-47963-2_10" target="_blank" >http://dx.doi.org/10.1007/978-3-031-47963-2_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-47963-2_10" target="_blank" >10.1007/978-3-031-47963-2_10</a>
Alternative languages
Result language
angličtina
Original language name
Interactive Matching Logic Proofs in Coq
Original language description
Matching logic (ML) is a formalism for specifying and reasoning about mathematical structures by means of patterns and pattern matching. Previously, it has been used to capture a number of other logics, e.g., separation logic with recursive definitions and linear temporal logic. ML has also been formalized in the Coq Proof Assistant, and the soundness of its Hilbert-style proof system has been mechanized. However, using a Hilbert-style system for interactive reasoning is challenging - even more so in ML, which lacks a general deduction theorem. Therefore, we propose a single-conclusion sequent calculus for ML that is more amenable to interactive proving. Based on this sequent calculus, we implement a proof mode for interactive reasoning in ML, which significantly simplifies the construction of ML proofs in Coq. The proof mode is a mechanism for displaying intermediate proof states and an extensible set of proof tactics that implement the rules of the sequent calculus. We evaluate our proof mode on a collection of examples, showing a substantial improvement in proof script size and readability.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Theoretical Aspects of Computing (ICTAC 2023)
ISBN
9783031479625
ISSN
0302-9743
e-ISSN
—
Number of pages
19
Pages from-to
139-157
Publisher name
Springer Nature Switzerland AG
Place of publication
Lima, Peru
Event location
Lima, Peru
Event date
Jan 1, 2023
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
001160556100010