All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Quasirandom-Forcing Orientations of Cycles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00132240" target="_blank" >RIV/00216224:14330/23:00132240 - isvavai.cz</a>

  • Result on the web

    <a href="https://epubs.siam.org/doi/full/10.1137/23M1548700" target="_blank" >https://epubs.siam.org/doi/full/10.1137/23M1548700</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/23M1548700" target="_blank" >10.1137/23M1548700</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Quasirandom-Forcing Orientations of Cycles

  • Original language description

    An oriented graph H is quasirandom-forcing if the limit (homomorphism) density of H in a sequence of tournaments is 2|H| if and only if the sequence is quasirandom. We study generalizations of the following result: the cyclic orientation of a cycle of length l is quasirandom-forcing if and only if l ≡ 2 mod 4. We show that no orientation of an odd cycle is quasirandom-forcing. In the case of even cycles, we find sufficient conditions on an orientation to be quasirandom-forcing, which we complement by identifying necessary conditions. Using our general results and spectral techniques used to obtain them, we classify which orientations of cycles of length up to 10 are quasirandom-forcing.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM JOURNAL ON DISCRETE MATHEMATICS

  • ISSN

    0895-4801

  • e-ISSN

  • Volume of the periodical

    37

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    28

  • Pages from-to

    2689-2716

  • UT code for WoS article

    001171548400010

  • EID of the result in the Scopus database

    2-s2.0-85179895893