Quasirandom-Forcing Orientations of Cycles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00132240" target="_blank" >RIV/00216224:14330/23:00132240 - isvavai.cz</a>
Result on the web
<a href="https://epubs.siam.org/doi/full/10.1137/23M1548700" target="_blank" >https://epubs.siam.org/doi/full/10.1137/23M1548700</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/23M1548700" target="_blank" >10.1137/23M1548700</a>
Alternative languages
Result language
angličtina
Original language name
Quasirandom-Forcing Orientations of Cycles
Original language description
An oriented graph H is quasirandom-forcing if the limit (homomorphism) density of H in a sequence of tournaments is 2|H| if and only if the sequence is quasirandom. We study generalizations of the following result: the cyclic orientation of a cycle of length l is quasirandom-forcing if and only if l ≡ 2 mod 4. We show that no orientation of an odd cycle is quasirandom-forcing. In the case of even cycles, we find sufficient conditions on an orientation to be quasirandom-forcing, which we complement by identifying necessary conditions. Using our general results and spectral techniques used to obtain them, we classify which orientations of cycles of length up to 10 are quasirandom-forcing.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM JOURNAL ON DISCRETE MATHEMATICS
ISSN
0895-4801
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
2689-2716
UT code for WoS article
001171548400010
EID of the result in the Scopus database
2-s2.0-85179895893