No additional tournaments are quasirandom-forcing
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00365856" target="_blank" >RIV/68407700:21340/23:00365856 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14330/23:00130163
Result on the web
<a href="http://hdl.handle.net/10467/107797" target="_blank" >http://hdl.handle.net/10467/107797</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2022.103632" target="_blank" >10.1016/j.ejc.2022.103632</a>
Alternative languages
Result language
angličtina
Original language name
No additional tournaments are quasirandom-forcing
Original language description
A tournament H is quasirandom-forcing if the following holds for every sequence (G_n) is an element of N of tournaments of growing orders: if the density of H in G_n converges to the expected density of H in a random tournament, then (G_n) is an element of N is quasirandom. Every transitive tournament with at least 4 vertices is quasirandom-forcing, and Coregliano (2019) showed that there is also a non-transitive 5-vertex tournament with the property. We show that no additional tournament has this property. This extends the result of Bucic (2021) that the non-transitive tournaments with seven or more vertices do not have this property.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
1095-9971
Volume of the periodical
108
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
—
UT code for WoS article
000878718300005
EID of the result in the Scopus database
2-s2.0-85140319594