All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The step Sidorenko property and non-norming edge-transitive graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00113648" target="_blank" >RIV/00216224:14330/19:00113648 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jcta.2018.09.012" target="_blank" >http://dx.doi.org/10.1016/j.jcta.2018.09.012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jcta.2018.09.012" target="_blank" >10.1016/j.jcta.2018.09.012</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The step Sidorenko property and non-norming edge-transitive graphs

  • Original language description

    Sidorenko's Conjecture asserts that every bipartite graph H has the Sidorenko property, i.e., a quasirandom graph minimizes the density of H among all graphs with the same edge density. We study a stronger property, which requires that a quasirandom multipartite graph minimizes the density of H among all graphs with the same edge densities between its parts; this property is called the step Sidorenko property. We show that many bipartite graphs fail to have the step Sidorenko property and use our results to show the existence of a bipartite edge-transitive graph that is not weakly norming; this answers a question of Hatami (2010) [13].

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Combinatorial Theory, Series A

  • ISSN

    0097-3165

  • e-ISSN

  • Volume of the periodical

    162

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    21

  • Pages from-to

    34-54

  • UT code for WoS article

    000452250200003

  • EID of the result in the Scopus database

    2-s2.0-85054197388