The step Sidorenko property and non-norming edge-transitive graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00113648" target="_blank" >RIV/00216224:14330/19:00113648 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jcta.2018.09.012" target="_blank" >http://dx.doi.org/10.1016/j.jcta.2018.09.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcta.2018.09.012" target="_blank" >10.1016/j.jcta.2018.09.012</a>
Alternative languages
Result language
angličtina
Original language name
The step Sidorenko property and non-norming edge-transitive graphs
Original language description
Sidorenko's Conjecture asserts that every bipartite graph H has the Sidorenko property, i.e., a quasirandom graph minimizes the density of H among all graphs with the same edge density. We study a stronger property, which requires that a quasirandom multipartite graph minimizes the density of H among all graphs with the same edge densities between its parts; this property is called the step Sidorenko property. We show that many bipartite graphs fail to have the step Sidorenko property and use our results to show the existence of a bipartite edge-transitive graph that is not weakly norming; this answers a question of Hatami (2010) [13].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory, Series A
ISSN
0097-3165
e-ISSN
—
Volume of the periodical
162
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
34-54
UT code for WoS article
000452250200003
EID of the result in the Scopus database
2-s2.0-85054197388