Ramsey upper density of infinite graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00133933" target="_blank" >RIV/00216224:14330/23:00133933 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1017/S0963548323000093" target="_blank" >https://doi.org/10.1017/S0963548323000093</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0963548323000093" target="_blank" >10.1017/S0963548323000093</a>
Alternative languages
Result language
angličtina
Original language name
Ramsey upper density of infinite graphs
Original language description
For a fixed infinite graph H, we study the largest density of a monochromatic subgraph isomorphic to H that can be found in every two-colouring of the edges of K N. This is called the Ramsey upper density of H and was introduced by Erdos and Galvin in a restricted setting, and by DeBiasio and McKenney in general. Recently [4], the Ramsey upper density of the infinite path was determined. Here, we find the value of this density for all locally finite graphs H up to a factor of 2, answering a question of DeBiasio and McKenney. We also find the exact density for a wide class of bipartite graphs, including all locally finite forests. Our approach relates this problem to the solution of an optimisation problem for continuous functions. We show that, under certain conditions, the density depends only on the chromatic number of H, the number of components of H and the expansion ratio |N(I)|/|I| of the independent sets of H.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMBINATORICS PROBABILITY & COMPUTING
ISSN
0963-5483
e-ISSN
—
Volume of the periodical
32
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
703-723
UT code for WoS article
000978677300001
EID of the result in the Scopus database
—