All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ramsey upper density of infinite graph factors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00133945" target="_blank" >RIV/00216224:14330/23:00133945 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1215/00192082-10450499" target="_blank" >http://dx.doi.org/10.1215/00192082-10450499</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1215/00192082-10450499" target="_blank" >10.1215/00192082-10450499</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ramsey upper density of infinite graph factors

  • Original language description

    The study of upper density problems on Ramsey theory was initiated by Erdos and Galvin in 1993 in the particular case of the infinite path, and by DeBiasio and McKenney in general. In this paper, we are concerned with the following problem: given a fixed finite graph F, what is the largest value of n, such that every 2-edge-coloring of the complete graph on N contains a monochromatic infinite F-factor whose vertex set has upper density at least A? Here we prove a new lower bound for this problem. For some choices of F, including cliques and odd cycles, this new bound is sharp because it matches an older upper bound. For the particular case where F is a triangle, we also give an explicit lower bound of 1- p 1 7 = 0.62203 ... , improving the previous best bound of 3/5.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Illinois Journal of Mathematics

  • ISSN

    0019-2082

  • e-ISSN

  • Volume of the periodical

    67

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    171-184

  • UT code for WoS article

    000975697100008

  • EID of the result in the Scopus database

    2-s2.0-85159664123