On convex complexity measures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00342826" target="_blank" >RIV/67985840:_____/10:00342826 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On convex complexity measures
Original language description
Khrapchenko's classical lower bound n(2) on the formula size of the parity function f can be interpreted as designing a suitable measure of sub-rectangles of the combinatorial rectangle f(-1)(0) x f(-1)(1). Trying to generalize this approach we arrived at the concept of convex measures. We prove the negative result that convex measures are bounded by O(n(2)) and show that several measures considered for proving lower bounds on the formula size are convex. We also prove quadratic upper bounds on a classof measures that are not necessarily convex.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA1019401" target="_blank" >IAA1019401: Theories, proofs and computational complexity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
411
Issue of the periodical within the volume
16-18
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
—
UT code for WoS article
000276167000016
EID of the result in the Scopus database
—