All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CNN architecture extraction on edge GPU

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00135461" target="_blank" >RIV/00216224:14330/24:00135461 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-031-61486-6_10" target="_blank" >http://dx.doi.org/10.1007/978-3-031-61486-6_10</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-61486-6_10" target="_blank" >10.1007/978-3-031-61486-6_10</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CNN architecture extraction on edge GPU

  • Original language description

    Neural networks have become popular due to their versatility and state-of-the-art results in many applications, such as image classification, natural language processing, speech recognition, forecasting, etc. These applications are also used in resource-constrained environments such as embedded devices. In this work, the susceptibility of neural network implementations to reverse engineering is explored on the NVIDIA Jetson Nano microcomputer via side-channel analysis. To this end, an architecture extraction attack is presented. In the attack, 15 popular convolutional neural network architectures (EfficientNets, MobileNets, NasNet, etc.) are implemented on the GPU of Jetson Nano and the electromagnetic radiation of the GPU is analyzed during the inference operation of the neural networks. The results of the analysis show that neural network architectures are easily distinguishable using deep learning-based side-channel analysis.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Intelligence in Hardware Security (AIHWS) Workshop (Satellite Workshops held in parallel with the 22nd International Conference on Applied Cryptography and Network Security, ACNS 2024)

  • ISBN

    9783031614859

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    18

  • Pages from-to

    158-175

  • Publisher name

    Springer

  • Place of publication

    Abu Dhabi

  • Event location

    Abu Dhabi

  • Event date

    Jan 1, 2024

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article

    001285569600010