All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Forcing generalised quasirandom graphs efficiently

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00138601" target="_blank" >RIV/00216224:14330/24:00138601 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1017/S0963548323000263" target="_blank" >https://doi.org/10.1017/S0963548323000263</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0963548323000263" target="_blank" >10.1017/S0963548323000263</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Forcing generalised quasirandom graphs efficiently

  • Original language description

    We study generalised quasirandom graphs whose vertex set consists of $q$ parts (of not necessarily the same sizes) with edges within each part and between each pair of parts distributed quasirandomly; such graphs correspond to the stochastic block model studied in statistics and network science. Lovasz and Sos showed that the structure of such graphs is forced by homomorphism densities of graphs with at most $(10q)&lt;^&gt;q+q$ vertices; subsequently, Lovasz refined the argument to show that graphs with $4(2q+3)&lt;^&gt;8$ vertices suffice. Our results imply that the structure of generalised quasirandom graphs with $qge 2$ parts is forced by homomorphism densities of graphs with at most $4q&lt;^&gt;2-q$ vertices, and, if vertices in distinct parts have distinct degrees, then $2q+1$ vertices suffice. The latter improves the bound of $8q-4$ due to Spencer.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10100 - Mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    COMBINATORICS PROBABILITY &amp; COMPUTING

  • ISSN

    0963-5483

  • e-ISSN

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    16-31

  • UT code for WoS article

    001119147100001

  • EID of the result in the Scopus database

    2-s2.0-85170671972