Forcing generalised quasirandom graphs efficiently
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00138601" target="_blank" >RIV/00216224:14330/24:00138601 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1017/S0963548323000263" target="_blank" >https://doi.org/10.1017/S0963548323000263</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0963548323000263" target="_blank" >10.1017/S0963548323000263</a>
Alternative languages
Result language
angličtina
Original language name
Forcing generalised quasirandom graphs efficiently
Original language description
We study generalised quasirandom graphs whose vertex set consists of $q$ parts (of not necessarily the same sizes) with edges within each part and between each pair of parts distributed quasirandomly; such graphs correspond to the stochastic block model studied in statistics and network science. Lovasz and Sos showed that the structure of such graphs is forced by homomorphism densities of graphs with at most $(10q)<^>q+q$ vertices; subsequently, Lovasz refined the argument to show that graphs with $4(2q+3)<^>8$ vertices suffice. Our results imply that the structure of generalised quasirandom graphs with $qge 2$ parts is forced by homomorphism densities of graphs with at most $4q<^>2-q$ vertices, and, if vertices in distinct parts have distinct degrees, then $2q+1$ vertices suffice. The latter improves the bound of $8q-4$ due to Spencer.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMBINATORICS PROBABILITY & COMPUTING
ISSN
0963-5483
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
16
Pages from-to
16-31
UT code for WoS article
001119147100001
EID of the result in the Scopus database
2-s2.0-85170671972