All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Divisibility of spheres with measurable pieces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00138608" target="_blank" >RIV/00216224:14330/24:00138608 - isvavai.cz</a>

  • Result on the web

    <a href="https://ems.press/journals/lem/articles/14255106" target="_blank" >https://ems.press/journals/lem/articles/14255106</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4171/LEM/1058" target="_blank" >10.4171/LEM/1058</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Divisibility of spheres with measurable pieces

  • Original language description

    For an r-tuple (y 1 , ... , y r ) of special orthogonal d x d matrices, we say that the Euclidean (d - 1) -dimensional sphere S d-1 is (y 1 , ... , y r ) -divisible if there is a subset A c S d-1 such that its translations by the rotations y 1 , ... , y r partition the sphere. Motivated by some old open questions of Mycielski and Wagon, we investigate the version of this notion where the set A has to be measurable with respect to the spherical measure. Our main result shows that measurable divisibility is impossible for a "generic" (in various meanings) r-tuple of rotations. This is in stark contrast to the recent result of Conley, Marks and Unger which implies that, for every "generic" r-tuple, divisibility is possible with parts that have the property of Baire.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ENSEIGNEMENT MATHEMATIQUE

  • ISSN

    0013-8584

  • e-ISSN

    2309-4672

  • Volume of the periodical

    70

  • Issue of the periodical within the volume

    1-2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    35

  • Pages from-to

    25-59

  • UT code for WoS article

    001229882700006

  • EID of the result in the Scopus database