All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning Explainable and Better Performing Representations of POMDP Strategies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00139094" target="_blank" >RIV/00216224:14330/24:00139094 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-031-57249-4_15" target="_blank" >http://dx.doi.org/10.1007/978-3-031-57249-4_15</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-57249-4_15" target="_blank" >10.1007/978-3-031-57249-4_15</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning Explainable and Better Performing Representations of POMDP Strategies

  • Original language description

    Strategies for partially observable Markov decision processes (POMDP) typically require memory. One way to represent this memory is via automata. We present a method to learn an automaton representation of a strategy using a modification of the L∗-algorithm. Compared to the tabular representation of a strategy, the resulting automaton is dramatically smaller and thus also more explainable. Moreover, in the learning process, our heuristics may even improve the strategy’s performance. We compare our approach to an existing approach that synthesizes an automaton directly from the POMDP, thereby solving it. Our experiments show that our approach can lead to significant improvements in the size and quality of the resulting strategy representations.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    TACAS 2024, 30th International Conference on Tools and Algorithms for the Construction and Analysis of Systems

  • ISBN

    9783031572487

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    21

  • Pages from-to

    299-319

  • Publisher name

    Springer

  • Place of publication

    Luxembourg City, Luxembourg

  • Event location

    Luxembourg City, Luxembourg

  • Event date

    Jan 1, 2024

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article

    001284179800015