Edge colorings avoiding patterns*
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00139279" target="_blank" >RIV/00216224:14330/24:00139279 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.ejc.2023.103822" target="_blank" >https://doi.org/10.1016/j.ejc.2023.103822</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2023.103825" target="_blank" >10.1016/j.ejc.2023.103825</a>
Alternative languages
Result language
angličtina
Original language name
Edge colorings avoiding patterns*
Original language description
We say that a pattern is a graph together with an edge coloring, and a pattern P = (H, c) occurs in some edge coloring c ' of G if c ', restricted to some subgraph of G isomorphic to H, is equal to c up to renaming the colors. Inspired by Matousek's visibility blocking problem, we study edge colorings that avoid certain patterns. We show that for every pattern P, such that the number of edges in P is at least the number of vertices in P plus the number of colors minus 2, there is a constant C such that every graph with maximum degree increment admits an edge coloring with C increment colors avoiding P; the same also holds for infinite sets of such patterns, provided that the number of patterns in the set grows at most exponentially. (c) 2023 Elsevier Ltd. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
117
Issue of the periodical within the volume
103825
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
1-9
UT code for WoS article
001164962900001
EID of the result in the Scopus database
2-s2.0-85171984112