IoT Data Quality Issues and Potential Solutions: A Literature Review
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F23%3A00129953" target="_blank" >RIV/00216224:14560/23:00129953 - isvavai.cz</a>
Result on the web
<a href="https://academic.oup.com/comjnl/advance-article-abstract/doi/10.1093/comjnl/bxac014/6529197?redirectedFrom=fulltext" target="_blank" >https://academic.oup.com/comjnl/advance-article-abstract/doi/10.1093/comjnl/bxac014/6529197?redirectedFrom=fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/comjnl/bxab183" target="_blank" >10.1093/comjnl/bxab183</a>
Alternative languages
Result language
angličtina
Original language name
IoT Data Quality Issues and Potential Solutions: A Literature Review
Original language description
In the Internet of Things (IoT), data gathered from dozens of devices are the base for creating business value and developing new products and services. If data are of poor quality, decisions are likely to be non-sense. Data quality is crucial to gain business value of the IoT initiatives. This paper presents a systematic literature review regarding IoT data quality from 2000 to 2020. We analyzed 58 articles to identify IoT data quality dimensions and issues and their categorizations. According to this analysis, we offer a classification of IoT data characterizations using the focus group method and clarify the link between dimensions and issues in each category. Manifesting a link between dimensions and issues in each category is incumbent, while this critical affair in extant categorizations is ignored. We also examine data security as an important data quality issue and suggest potential solutions to overcome IoT's security issues. The finding of this study proposes a new research discipline for additional examination for researchers and practitioners in determining data quality in the context of IoT.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50204 - Business and management
Result continuities
Project
<a href="/en/project/EF16_027%2F0008360" target="_blank" >EF16_027/0008360: Postdoc@MUNI</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMPUTER JOURNAL
ISSN
0010-4620
e-ISSN
1460-2067
Volume of the periodical
66
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
615-625
UT code for WoS article
000756711200001
EID of the result in the Scopus database
—