All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cyber Key Terrain Identification Using Adjusted PageRank Centrality

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F24%3A00135177" target="_blank" >RIV/00216224:14610/24:00135177 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-031-56326-3_21" target="_blank" >http://dx.doi.org/10.1007/978-3-031-56326-3_21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-56326-3_21" target="_blank" >10.1007/978-3-031-56326-3_21</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cyber Key Terrain Identification Using Adjusted PageRank Centrality

  • Original language description

    The cyber terrain contains devices, network services, cyber personas, and other network entities involved in network operations. Designing a method that automatically identifies key network entities to network operations is challenging. However, such a method is essential for determining which cyber assets should the cyber defense focus on. In this paper, we propose an approach for the classification of IP addresses belonging to cyber key terrain according to their network position using the PageRank centrality computation adjusted by machine learning. We used hill climbing and random walk algorithms to distinguish PageRank’s damping factors based on source and destination ports captured in IP flows. The one-time learning phase on a static data sample allows near-real-time stream-based classification of key hosts from IP flow data in operational conditions without maintaining a complete network graph. We evaluated the approach on a dataset from a cyber defense exercise and on data from the campus network. The results show that cyber key terrain identification using the adjusted computation of centrality is more precise than its original version.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICT Systems Security and Privacy Protection. SEC 2023. IFIP Advances in Information and Communication Technology, vol 679.

  • ISBN

    9783031563256

  • ISSN

    1868-4238

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    293-306

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Poznan, Poland

  • Event date

    Jan 1, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001294776100021