Terrain Classification with Crawling Robot Using Long Short-Term Memory Network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00328018" target="_blank" >RIV/68407700:21230/18:00328018 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-030-01424-7_75" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-01424-7_75</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-01424-7_75" target="_blank" >10.1007/978-3-030-01424-7_75</a>
Alternative languages
Result language
angličtina
Original language name
Terrain Classification with Crawling Robot Using Long Short-Term Memory Network
Original language description
Terrain classification is a crucial feature for mobile robots operating across multiple terrains. One way to learn a terrain classifier is to use a stream of labeled proprioceptive data recorded during a terrain traversal. In this paper, we propose a new terrain classifier that combines a feature extraction from a data stream with the long short-term memory (LSTM) network. Features are extracted from the information-sparse data stream by applying a sliding window computing three central moments. The feature sequence is continuously classified by the LSTM network into multiple terrain classes. Furthermore, a modified bagging method is used to deal with a limited and unbalanced training set. In comparison to the previous work on terrain classifiers for a hexapod crawling robot using only servo-drive feedback, the proposed classifier provides continuous classification with the F1 score up to 0.88, and thus provide better results than SVM classifier learned on the same input data.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-18858S" target="_blank" >GA18-18858S: Robotic Lifelong Learning of Multi-legged Robot Locomotion Control in Autonomous Data Collection Missions</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Neural Networks and Machine Learning – ICANN 2018
ISBN
978-3-030-01423-0
ISSN
0302-9743
e-ISSN
—
Number of pages
10
Pages from-to
771-780
Publisher name
Springer
Place of publication
Basel
Event location
Rhodes
Event date
Oct 4, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000463340000075