All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Terrain Classification with Crawling Robot Using Long Short-Term Memory Network

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00328018" target="_blank" >RIV/68407700:21230/18:00328018 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-01424-7_75" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-01424-7_75</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-01424-7_75" target="_blank" >10.1007/978-3-030-01424-7_75</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Terrain Classification with Crawling Robot Using Long Short-Term Memory Network

  • Original language description

    Terrain classification is a crucial feature for mobile robots operating across multiple terrains. One way to learn a terrain classifier is to use a stream of labeled proprioceptive data recorded during a terrain traversal. In this paper, we propose a new terrain classifier that combines a feature extraction from a data stream with the long short-term memory (LSTM) network. Features are extracted from the information-sparse data stream by applying a sliding window computing three central moments. The feature sequence is continuously classified by the LSTM network into multiple terrain classes. Furthermore, a modified bagging method is used to deal with a limited and unbalanced training set. In comparison to the previous work on terrain classifiers for a hexapod crawling robot using only servo-drive feedback, the proposed classifier provides continuous classification with the F1 score up to 0.88, and thus provide better results than SVM classifier learned on the same input data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-18858S" target="_blank" >GA18-18858S: Robotic Lifelong Learning of Multi-legged Robot Locomotion Control in Autonomous Data Collection Missions</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning – ICANN 2018

  • ISBN

    978-3-030-01423-0

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    771-780

  • Publisher name

    Springer

  • Place of publication

    Basel

  • Event location

    Rhodes

  • Event date

    Oct 4, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000463340000075